Variant and Genotype Calling in Polyploids

Lindsay Clark, University of Illinois, Urbana-Champaign
Excellence in Breeding meeting, CIP, 8 May 2019

See https://lvclark.github.io for copies of my presentation materials
Terminology

- **Variant calling**: Identifying SNPs and other variants (and their genomic locations, if there is a reference)
 - Is this a true SNP, a sequencing error, or a difference between paralogs?
 - A → G

- **Genotype calling**: For all identified SNPs, determining the genotype for every individual in a population.
 - Is this a homozygote or heterozygote? What allele dosage in a heterozygote?
 - Sam1 AAAG
 - Sam2 AAAA
 - Sam3 AAAA
 - Sam4 AAGG
Issues with variant calling in polyploids

- **Allopolyploids** - Two or more subgenomes from different species, typically not recombining with each other
- **Isoloci** - Paralogous loci originating from different subgenomes
- Fixed differences between subgenomes are not informative and should not be called as variants
- Ideally, every read is aligned/assigned to the correct isolocus
- For autopolyploids, the software should be aware that read depth in heterozygotes might not be a 1:1 ratio

```
ACCCGATA
ACCCGATA
ACCCGATA
ACCCGATA
ACCTGATA
ACCTGATA
ACCTGATA
ACCTGTGTA
ACCTGTGTA
```

Example:

- C/T distinguishing isoloci
- A/T variable in one isolocus
Variant calling software: UNEAK

- Non-reference pipeline
- Part of TASSEL3
- Keeps pairs of sequence tags that differ by one nucleotide
- Groups of more than two similar sequence tags get discarded
- This eliminates most paralogs, but many good markers as well
- Can run on a laptop
- Read depth higher than 127 not reported
- Software not updated or maintained
Variant calling software: GBS-SNP-CROP

- Works with or without reference
- Set of Perl scripts utilizing existing tools such as BWA, Samtools, and Vsearch
- Without a reference, Vsearch is used to cluster reads to make a mock reference
- Ratio of read depth within individuals is used to help filter paralogs (mnAlleleRatio parameter)
- Allows use of paired-end reads

Variant calling software: Stacks

- Works with or without a reference
- Variant and genotype calling integrated with software for population genetics
- Assumes diploidy
- For polyploids, it is recommended to lower the “M” parameter to help filter paralogs (http://doi.org/10.1111/2041-210X.12775)
- Outputs VCF, but intermediate files are tab-delimited text and can be processed with custom software

https://doi.org/10.1111/mec.12354
Variant calling software: HaploTag

- Does not require reference genome
- Optimized for self-pollinating polyploid species
- Can output SNPs or haplotype-based genotypes

https://doi.org/10.1534%2Fg3.115.024596
Variant calling software: TASSEL-GBS

- Requires a reference genome
- Can run on a laptop
- Use TASSEL5 for most current version
- Assumes diploidy, but does output read depth in VCF
- Can always use “GetTagTaxaDistFromDBPlugin” to export raw table of read depth for each unique tag, and do your own processing from there

https://bitbucket.org/tasseladmin/tassel-5-source/wiki/Tassel5GBSv2Pipeline
Variant calling software: TASSEL4-poly

- Requires reference genome
- Custom modified version of TASSEL4 that is not capped at read depth of 127
- Integrates with VCF2SM software for performing genotype calls with SUPERMASSA
Variant calling software: GATK

- Requires reference genome
- Designed for whole genome resequencing data, but can also work with GBS
- Can output polyploid genotypes, but uses a naïve model for genotype calling
Variant calling software: FreeBayes

- Requires reference genome
- Designed for resequencing but works for GBS
- Uses sequence reads rather than alignments for calling variants (since one read can have multiple alignments)
- For polyploid variant discovery, lower the “min-alternate-fraction” argument below the default of 0.2
- Can perform polyploid genotype calling
- Preprint published 2012, hasn’t been through peer-review
Genotype calling issues in polyploids

- Biggest challenge: inferring allele dosage
- High genotype certainty requires very high read depth, which can be cost-prohibitive
- Heterozygote undercalling (allelic dropout) becomes a bigger issue when allele copy ratio is not 1:1
- Technical issues can cause read depth ratios to deviate from allele copy ratios more than we would expect
- How can we make the best genotype estimations for the amount of read depth that we can afford?
Bayesian genotype calling

- $L(D|G)$: Likelihood of the observed distribution of allelic read depth (D) if a given genotype (G) were the true genotype
 - If the genotype is AAAB, what is the probability of getting 7 reads of A and 4 reads of B?
- $P(G)$: Prior probability of the genotype
 - How frequently do we expect to find AAAB in the population?
- $P(G|D)$: Posterior probability of the genotype
 - Given that we have 7 reads of A and 4 reads of B, what is the probability that AAAB is the true genotype?

\[
P(G|D) = \frac{L(D|G)P(G)}{\sum_{i=1}^{k} L(D|G_i)P(G_i)}
\]

For k possible genotypes
Practical effects of Bayesian genotype calling

- High read depth → $P(G|D)$ is more influenced by $L(D|G)$
 - i.e. the observed allelic read depth ratio
- Low read depth → $P(G|D)$ is more influenced by $P(G)$
 - i.e. population parameters
- Read depth of zero → $P(G|D) = P(G)$

At low read depth a genotype might appear homozygous, but if that allele is rare in the population, the homozygous genotype will have a low $P(G)$, and a heterozygous genotype might have the highest $P(G|D)$.

$$P(G|D) = \frac{\sum_{i=1}^{k} L(D|G_i)P(G_i)}{L(D|G)P(G)}$$
Practical effects of Bayesian genotype calling

- High read depth $\rightarrow P(G|D)$ is more influenced by $L(D|G)$
 - i.e. the observed allelic read depth ratio
- Low read depth $\rightarrow P(G|D)$ is more influenced by $P(G)$
 - i.e. population parameters
- Read depth of zero $\rightarrow P(G|D) = P(G)$

- At low read depth a genotype might appear homozygous, but if that allele is rare in the population, the homozygous genotype will have a low $P(G)$, and a heterozygous genotype might have the highest $P(G|D)$
Practical effects of Bayesian genotype calling

- High read depth → $P(G|D)$ is more influenced by $L(D|G)$
 - i.e. the observed allelic read depth ratio
- Low read depth → $P(G|D)$ is more influenced by $P(G)$
 - i.e. population parameters
- Read depth of zero → $P(G|D) = P(G)$

- At low read depth a genotype might appear homozygous, but if that allele is rare in the population, the homozygous genotype will have a low $P(G)$, and a heterozygous genotype might have the highest $P(G|D)$

\[
P(G|D) = \frac{\sum_{i=1}^{k} L(D|G_i)P(G_i)}{L(D|G)P(G)}
\]
Practical effects of Bayesian genotype calling

- High read depth $\Rightarrow P(G \mid D)$ is more influenced by $L(D \mid G)$
 - i.e. the observed allelic read depth ratio
- Low read depth $\Rightarrow P(G \mid D)$ is more influenced by $P(G)$
 - i.e. population parameters
- Read depth of zero $\Rightarrow P(G \mid D) = P(G)$

- At low read depth a genotype might appear homozygous, but if that allele is rare in the population, the homozygous genotype will have a low $P(G)$, and a heterozygous genotype might have the highest $P(G \mid D)$
Practical effects of Bayesian genotype calling

- High read depth → $P(G|D)$ is more influenced by $L(D|G)$
 - i.e. the observed allelic read depth ratio
- Low read depth → $P(G|D)$ is more influenced by $P(G)$
 - i.e. population parameters
- Read depth of zero → $P(G|D) = P(G)$

- At low read depth a genotype might appear homozygous, but if that allele is rare in the population, the homozygous genotype will have a low $P(G)$, and a heterozygous genotype might have the highest $P(G|D)$

$$P(G|D) = \frac{L(D|G)P(G)}{\sum_{i=1}^{k} L(D|G_i)P(G_i)}$$
Genotype calling software: GATK and FreeBayes

- GATK uses uniform priors, and therefore can have high error rate at low read depth
- FreeBayes estimates priors from allele frequencies under Hardy-Weinberg Equilibrium
Genotype calling software: SUPERMASSA

- Originally designed for SNP array data, but works with read depth.
- \(P(G) \) (genotype priors) can be based on Hardy-Weinberg Equilibrium or an F1 mapping population design.
- \(L(D|G) \) (genotype likelihoods) are estimated a normal distribution of signal ratio, centered on the expected value (e.g. 0.33, or 1:3, for ABBB).
- Can also estimate ploidy if unknown.

https://doi.org/10.1371/journal.pone.0030906
Genotype calling software: fitPoly

- Originally designed for SNP array data
- Priors can be based on HWE, F1, no constraints, or user-specified
- Tries different likelihood estimation based on bias of signal towards one allele or the other, and linear or quadratic relationship between signal and dosage

https://doi.org/10.1186/1471-2105-12-172
Genotype calling software: EBG

- Designed for sequencing data
- $L(D|G)$ (genotype likelihoods) are estimated under a binomial distribution
 - E.g. 7 reads of A and 4 reads of B from AAAB =
 - $11!/(7! * 4!) * 0.75^7 * 0.25^4 = 0.172$
- $P(G)$ (genotype priors) based on HWE or inbreeding in autopolyploids.
- $P(G)$ can be estimated for allopolyploids if allele frequency in a parental species is known

https://doi.org/10.1093/bioinformatics/btx587
Genotype calling software: updog

- Designed for sequencing data
- Models technical issues with the data
 - Bias: some alleles get proportionately more sequencing reads than others
 - Overdispersion: allele depth ratios vary more than expected from the expected ratio
- $L(D|G)$ (genotype likelihoods) are estimated under a beta-binomial distribution
 - The probability of sampling a given allele from a given genotype is assumed to vary
- $P(G)$ (genotype priors) based on HWE, F1, or statistical distributions
- Outputs posterior mean genotypes
- Runs slowly due to estimation of many parameters

https://doi.org/10.1534/genetics.118.301468
Genotype calling software: polyRAD

- Designed for sequencing data, especially GBS data
- \(L(D \mid G) \) (genotype likelihoods) are estimated under a beta-binomial distribution
 - Overdispersion parameter only estimated once, reducing computation time with respect to updog
- \(P(G) \) (genotype priors) are highly informed by biology, improving accuracy at low read depth, including zero depth
 - Any biparental mapping population design
 - Priors updated per-individual based on pop. structure and linkage disequilibrium
 - Allopolyploid and autopolyploid inheritance modes
- Outputs posterior mean genotypes
Quick demo of polyRAD with remaining time...